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ABSTRACT 

In this paper, we succinctly presented that information transmission satisfies 

the properties of metric space. The space of information source is infact a 

metric space to which a geometric picture can be ascribed. Much more in 

error-control codes, the measure of comparing two codes words of equal 

length is the hamming distance – is obviously a metric. To achieve this, we 

viewed the forgoing under information metric and hamming metric. 
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Information geometry, Information metric, Hamming metric, Error-detecting 
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1.0 INTRODUCTION 

The ratio of ‘metric’ is a generalization of the Euclidean metric arising from 

the four long-known properties of Euclidean distance. The Euclidean metric 

defines the distance between the lines connecting them, with this idea; we 
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introduce a measure of distance between information sources. It 

demonstrates that the space of information sources has much topological 

structure which here for has not been utilized directly in application of 

information theory. The space of information source is, in fact a metric 

space to which a geometric picture can be ascribed, which we called 

information metric [1]. The information metric quantifies the degree of 

recording equivalence. And also, it provides some insight into the nature of 

information itself. In error control codes, the measure of comparing two 

code wards of equal length is the hamming distance which simply is the 

number of places, where they differ. This is obviously a metric and we 

therefore called it the hamming metric. 

The main objects of coding theory are metric vector or matrix spaces. 

Subsets of spaces are known as codes. The main problem is constructing 

codes of given pairwise distance and having maximal cardinality. Most 

known and most investigated spaces Hamming spaces. Quite a good number 

of papers and Books have discussed the Hamming metrics, we mention here 

( [2],[3],[5],[6], [7]). However this work did not consider metric in details. 

A motivation of this work was the conviction that an understanding of the 

topological structure of the metric lattice is necessary for developing a 

quantitative measure and that of the Hamming metric is necessary for the 

developing of error-control codes for better transmission of information. 

The structure of this paper is as follows: we first defined some terms used in 

the paper and we went further to discuss the information metric and 

hamming metric. 
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Definition 1.1: 

 A metric space is an ordered pair (M, d) where M is a set (which some 

authors require being non empty) and d is a metric on M, which is a 

function. 

𝑑:𝑀 𝑋 𝑀 → ℛ 

such that for any x, y and z in M 

1. d(x,y)   ≥ 0                                           (non – negativity) 

2. d(x,y)  =  0            if and only if x = y (identity of indiscernible) 

3. d(x,y)  =  d(y,x)                                   (symmetry)              

4. d(x,y) ≤   d(x,y) + d(y,z)                     (triangular inequality) 

Definition 1.2: 

The hamming weight W(c) of a code word c is the number of non zero 

components in the code word. 

Definition 1.3 

The hamming distance between two code words d(x,y), is the number of 

places in which the code words x and y differ. 

Definition 1.4 

The minimum (Hamming) distance of a code c is the minimum distance 

between any two code words in the code. 

d(c) = min {d(x,y) / x ≠  y,  x, y 𝜖 c} 

 

2.0   INFORMATION METRIC 

We introduce here the idea of a measure of distance between information 

sources; this will demonstrate that the space of information sources has 

much topological structure which therefore has not been utilized directly in 

application of information theory or in the study of complex systems. 
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The space of information is in fact, a metric space to which a geometric 

picture can be ascribed [1]. 

 

2.1 INFORMATION GEOMETRY 

Conventional development of information theory measure the complexity of 

a source in terms of the entropy. Entropy is a function on the space of 

sources I that yields real numbers, 𝐻(𝑠):𝑇 → ℛ,                

With the source characterized by its probability measure. Indeed, the 

quantity of information, the entropy, is a measure on the space of 

information sources, in the same sense that probability is a measure on event 

space [4]. 

The entropy of source 𝑋𝜖𝐼 quantifies the size or volume of the equivalence 

class. The following establishes entropy as a measure and sets up a partially 

“geometric” picture. 

The starting point of the development is the following four definitions: 

1. The origin  ∅ is the measurement set that is predictable:𝐻(∅) =  0 

2. The norm ‖𝑋‖ of a source X is its entropy H(X). 

3. The addition of two sources is the union of measurements:   

X + Y = {all events in either X or Y} 

4. The product of two sources is the intersection of their measurement

 𝑋 ∙ 𝑌 = {all those events common to X and Y}. 

These operators yield an algebra of measurements. The first step is to 

establish that the entropy is a measure. 

1. 0 ≤ 𝐻(𝑋) ≤ ∞  for every source X and ∃ Xo such that H(Xo) < ∞. 

2. 𝐻(𝑋 + 𝑌) = 𝐻(𝑋) + 𝐻(𝑌), whenever 𝑋 ∙ 𝑌 = ∅; that is, the sources 

are independent. 

It also follows from these that: 
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1. If X → Y, then H(Y) ≤ H(X); 

2. H(∅) = 0; and 

3. H(X + Y) ≤  H(X) + H(Y) for any sources X and Y.                                                                            

To determine the distance d(X,Y) between two sources X and Y requires a 

measure of their difference X ∆ Y, where ∆ is the symmetric difference in 

the set theoretic sense. X ∆ Y is itself an information source and so formally 

we define 𝑑(𝑋,𝑌) = ‖𝑋∆𝑌‖                          (1) 

This yields a generalized picture of the norm of a source as being the 

“distance” from the origin of predictable, zero – entropy sources, since  

‖𝑋‖ = ‖𝑋∆∅‖ = 𝑑(𝑋,∅)                          (2) 

The information source X ∆ Y can be explain as below  

In set theoretic terms there are two constituent, independent sources: 

(i) X – Y are those  events in X and not in Y and 

(ii) Y – X corresponds to those in Y and not in X. The entropy H(X - Y) 

of the source measurements in X - Y defines a conditional entropy 

H(X|Y) for measurements xi of X given yj of Y, such that xi is not 

determined from yj with probability one. 

We define a source Z that is the union of these two sources, 

𝑍 ≡ 𝑋∆𝑌 = 𝑍1 + 𝑍2 = (𝑋 − 𝑌) + (𝑌 − 𝑋).              (3) 

From the algebra of measurements it follows that  

𝑍 = (𝑋 + 𝑌) ∙ 𝑋 ∙ 𝑌������ = 𝑋 ∙ 𝑋 ∙ 𝑌������ + 𝑌 ∙ 𝑋.𝑌 ������              (4) 

In informational terms, we have 

𝐻(𝑋 − 𝑌) =  𝐻(𝑋 ∙ 𝑋 ∙ 𝑌������) 𝑎𝑛𝑑 𝐻�𝑌 –𝑋� = 𝐻(𝑌 ∙ 𝑋 ∙ 𝑌������)                    (5) 

A measure of the size or entropy of Z will be a measure of the non-common 

or distance between x and y. 

H(Z) = H(Z1 + Z2) = H(Z1) + H(Z2/Z1) = H(Z1)                                   (6) 
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The finaly step follows from the independence of  Z1 and Z2. 

Z1 ∙ Z2 = (X ∙ X ∙ Y) ∙ (Y ∙ X ∙ Y) = (X∙ Y) ∙X ∙ Y = Ф                         (7) 

We can further obtain  

H(Z) = H(X ∙ X ∙ Y) + H(Y ∙ X ∙ Y) = H(X/Y) + H(Y/X)                    (8) 

With this we have established, starting with the entropy as a norm of 

information source that algebra of measurement allows us to define the 

conditional source x-y and y-x. From this it readily follows that 

║X –Y║= d(X-Y,Ф) 

The associate pseudo-geometric picture is shown in fig 1. 
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Fig 1. The geometric interpretation of space information sources. Shown are 

the distances and information vectors for three sources. 

 

2.2 INFORMATION METRIC 

The information quantity  d(x,y) = h(x/y) + H(y/x) 

Can be interpreted as the total independent information. We now establish 

its metric properties. Although the proofs are straight forward. 

THEOREM 1 

D is a metric and (I,d) is a metric space. 

Proof 

i. Symmetry: d(x,y) = d(y,x) this follows directly from the symmetry of 

definition 

ii. Equivalence: d(x,y) = o  if and only if x~y  

iii. “Only if”: assume d(x,y) = 0  As the conditional entropies themselves 

are positive or zero and their sum is zero, they individually vanish. 

Consider one of the zero conditional entropies H(x/y) = 0   
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The measurements of x knowing those of y provide no new information and 

so may be inferred with probability one from y. thus, there is a recording, 

that may be many-to-one, of measurements of y into x measurements. 

Similarly, since H(y/x) vanishes, there is a recording of x measurements into 

those from source y. Taking these together, there is a one-to-one coding 

between measurements from x and from y and so they are equivalent 

sources: x~y, [1]. 

For the “if” portion: assume x~y, then there is a one-to-one recording 

between measurements from x and from y. measurements of source x can be 

deduced with probability one from those of y and vise-versa. It follows from 

this that the conditional entropies vanish, as does the distance between them. 

 

2.3  TRIANGULAR INEQUALITY 

d(x,z) ≤ d(x,y) + d(y,z) we consider expressions of the three variables joint 

entropy. 

H(x,z) ≤ H(x,y,z) or  

H(x,z) ≤ H(x/yz) + H(y,z)                                                                   (9) 

Noting that additional measurements can not increase the entropy, i.e.  

H(x/y) ≥ H(x/yz), we have 

H(x,z) ≤ H(x/y) + (y,z) or 

H(x,z) ≤ H(x,y) – H(y) + H(y,z)                                                         (10) 

Subtracting the average independent entropy 

½ (H(x) + H(y)) yields  

H(x,z) – ½ H(x) – ½ H(z) ≤ H(x,y) – ½ H(y) – ½ H(x) + H(y,z) -1/2 H(z) – 

½ H(y) 

Or 

H(x/z) + H(z/x) ≤ H(x/y) + H(y/x) + H(y/z) + H(z/y) 
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Or 

d(x,z) ≤ d(x,y) + d(y,z)                                                                  (11) 

thus, d(-,-) is a metric. With this it follows that the pair (I,d), where I is the  

space of recording – equivalent information sources, is a metric space. This 

completes the proof. 

The theorem indicates that the space of information has  quite a bit of 

topological structure. For example, the notion of ϵ- balls of “close” 

information sources. The continuity of function on information sources can 

be developed. 

These are numerical computations of information distances will follow in a 

sequel. 

We can define a normalized metric as follows: 

   d(x,y) = H(x/y) + H(y/x)                                                                (12) 

                     H(x,y) 

Note that in the case of independent sources   d = 1 

 

                          x                                          y 

 

Fig 2. Discrete channel 

 

A simple model of the process is shown in fig 2. Where x represents the 

space of messages transmitted and y the space of messages received during a 

unit time over the channel. 

Transmitter Noisy channel Receiver 
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3.0   HAMMING METRIC 

We shall here work with an alphabet, which is simply a finite set A of 

symbols. If A has size q, then we call A a q-ary alphabet (although we say 

binary and denary rather than 2-ary and 3-ary.  

For  most purposes, it is sufficient to take A to  be Fq , the  field of order q. 

A word of length n is simply a string consisting of n (not necessarily distinct 

elements of A, i.e. an element of A, and a block code of length  is simply a 

set of words of length n, i.e. a sub set of An . 

If A is a q-ary alphabet, we say that any code over A is a q-ary code. 

Although there are words which have different lengths, but our entity is with 

the block code. 

3.1   ERROR DETECTION AND ERROR CORRECTION  

DIFINITION 1.41  

Let A = {a1,a2,…..,ar} be a finite set, which we call a code alphabet.  

An r-ary code  over A is a sub set C of the set A of all words over A. the 

elements of C are called code words. The number r is called the radix of the 

code. 

When we talk about the number of errors in a received code word, we are 

talking about the distance between a received word and a transmitted word. 

Suppose a codeword x = x0x1,…….xn-1 is sent through a channel and the 

received vector is sent through a channel and the received vector is 

y=y0y1…..yn-1. The error vector is defined as e = y-x = ℮0℮1……℮n-1,[6]. 

 The job of the decoder is to decide which code word was most likely 

transmitted, or equivalently decide which error vector most likely occurred. 

Many codes use a nearest neighbor decoding scheme which chooses the 

code word that minimizes the distance between the received vector and 

possible transmitted vector. A nearest neighbor decoding scheme for a q-ary 
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code maximizes the decoder’s likelihood of correcting errors provided the 

following assumptions are made about the channel. 

1. Each symbol transmitted has the probability  p(<1/2) of being 

received in error. 

2. If a symbol is received in error, that each of the q-1 possible is equally 

likely. 

Such a channel is called a q-ary symmetric channel, throughout we shall 

assume the channels involves as symmetric. 

The steps of the  encoding and decoding that concern us  are as follows: 

M → Encode →C→Noise →C + ℮ = r → Decode → M  

Where m is the message, c is the codeword, ℮ is the error vector due to 

noise,  r is the received word or vector. 

The hope is that        m = m 

Informally a code is t- error detecting if, whenever we take a codeword 

and change at most t of the symbols in it, we don’t reach a different code 

word. So if we send the new word to someone without telling him which 

symbols we changed, he will be able to tell us whether we changed any 

symbols. 

A code is t-error connecting if whenever we take a code word and change  

at most t of the symbols in it ,we don’t reach a different code word, and 

we don’t even reach word which can be obtained from different starting 

code word by changing at most t of the symbols. So if we sent the new 

word to someone without telling him which symbols we changed, he will 

be able to tell us which code word we started with.  

Formally we define a metric (distance function on An  as follows: given 

two words x and y differ, i.e. 

 if  x = x1 …………xn  and  y = y1 ……….yn, then 
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d(x,y) is the number of  values I for which is called the hamming distance 

d. 

LEMMA 3.41 

D is a metric on An  

1. d(x,y) = 0 for all x ϵ An  

2. d(x,y) ˃ 0 for all x ≠ An  

3. d(x,y) = d(y,x) for all x, y ϵ An  

4. d(x,z) ≤ d(x,y) + d(y,z) for all x, y, z ϵ An  

Proof 

(1), (2) and (3) are  very easy, so let us do (4) 

Now  d(x,z) is the number of values I for which xi ≠ zi. Note that if xi ≠ 

zi, then either xi ≠ yi or yi ≠ zi. Hence  

{i│xi ≠ zi} ⊆{i│xi≠yi} ⋃ {i│yi ≠ zi}; 

So │{i│xi ≠ z}│ ≤ │{i│xi ≠ yi} ⋃{i│yi ≠ zi} 

                             ≤ │{i│xi ≠ yi}│+ │{i│yi ≠ zi}│ 

                  d(x,z) ≤ d(x,y) + d(y,z) 

now we can talk about error detection and correction. We say that a code 

c is t-error detecting if d(x,y) ˃ t for any two distinct words in C. we say 

that c is t-error correcting if there do not exist words x,y ϵ c and z ϵ An  

such that  d(x,y) ≤ t and d(y,z) ≤ t. Therefore the function d: AxA → ℜ is 

the hamming distance which satisfies all the property of metric space, 

hence the pair ( ,2An d ) is known as the Hamming metric. 

Sphere: For Ana 2∈  and positive integer k 

S(a, k) = { Anx 2∈ │d(a, k) ≤ k} is called sphere radius with centre a. 

For a = 011 hence S(a,2) = {000,100,010,110,101,011,111} 
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EXAMPLE 

The simplest kinds of error detecting codes are repetition code of length n 

over A simple consists of all words aa……a, for a ϵ A. For this code, any 

two distinct code words differ in every position, and so d(x,y) = n for all 

x ≠ y in c. 

So the code is t-error detecting for every t ≤ n-1, and is t-error correcting 

for every t ≤ 𝑛−1
2

 . 

    We solve Some examples of minimum distance code words                  

( minimum E or min E = δ) base on [3]. 

Example 1. If  AAE 6
2

2
2: →  with min E is 5 then How many                             

(1)    errors can be detected  

 (2)    errors can be corrected 

E(00)=000000  E(11)=111111  E(10)=101010  E(01)=010101  

Solution1 

δ=7  

(1) errors of weight≤ δ-1=5-1=4 be detected 

(2) errors of weight≤( δ-1) ∕ 2=2 can be corrected 

Example 2. If  E: AA 6
2

2
2 → Find   (1) Min E then 

(2) errors detecting capacity 

(3) errors correcting capacity 

Where E(00)=000000  E(11) =111111  E(10)=101010  E(01)=010101 

Solution 2 

       d(E(00),E(11))= 6 d(E(01),E(11))=3    

       d(E(00),E(01))=3  d(E(00),E(10))=3 

       d(E(01),E(10))=6  d(E(10),E(11))=3 

(1) min E= δ is 3 
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(2) error detecting capacity: E can detect errors with weight ≤ δ-1=3-1=2 

(3) errors correcting capacity: E can correct errors of weight≤(δ-1) ∕ 2=1 

Example 3.  If  E: AA 6
2

3
2 → Find  (1) min E then 

      (2) error detecting capacity 

      (3) errors correcting capacity 

Where E(000)=000111  E(001)=001001 E(010)=010010 E(100)=100100      

E(110)=110001   E(101)=101010   E(011)=011100  E(111)=111000 

Solution 3 

First Distance are found 

d(E(000),E(001))=3   d(E(100),E(010))=4 

d(E(000),E(010))=3   d(E(100),E(001))=4 

d(E(000),E(100))=3   d(E(100),E(110))=3 

d(E(000),E(110))=4   d(E(100),E(101))=3 

d(E(000),E(101))=4   d(E(100),E(011))=3 

d(E(000),E(011))=4   d(E(100),E(111))=3 

d(E(000),E(111))=6 

d(E(010),E(001))=4   d(E(001),E(110))=3 

d(E(010),E(110))=3   d(E(001),E(101))=3 

d(E(010),E(101))=3   d(E(001),E(011))=2 

d(E(010),E(011))=3   d(E(001),E(111))=2 

d(E(010),E(111))=3 

d(E(110),E(101))=4   d(E(101),E(011))=3 

d(E(110),E(011))=4   d(E(101),E(111))=2 

d(E(110),E(111))=2   d(E(011),E(111))=2 

Min E=2=δ 

(2) Error detecting capacity: E can detect errors with weight ≤ δ-1=2-1=1 
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(3) Error correcting capacity: E can correct errors of weight≤ (δ-1) ∕ 2=1∕2 

can be corrected. This means E cannot correct any error. 

                     

LEMMA 3.2 

A code C is t-error detecting if and only d(C) ≥ t + 1, and is t-error- 

correcting if and only if d(C) ≥ 2t + 1 

Proof 

The first fact is immediate from the definition of “t-error-detecting”. 

For the second part, assume that C is not t-error-correcting. Then there 

exist distinct codeword x,y, ϵ C and a word z ϵ An such that 

                       d(x,z) ≤ t and d(z,y) ≤ t.  

By triangle inequality    d(x,y) ≤ d(x,z) + d(z,y) ≤ 2t and have d(C) ≤ 2t. 

contradicting the assumption that d(C ) ≥ 2t +1.  

Conversely, suppose that C can correct up to t errors. If d(C) ≤ 2t then 

there are two codewords that differ in 2t bits. Changing k of the bits in 

one of these codewords produces a bit string that differs from each of 

these two codewords in exactly t positions, thus making it impossible to 

correct these t errors. 

LEMMA 3.3 

A code c is t-error-correcting  if and only if for any distinct words x, y ϵ 

c, the spheres S(x,t) and S(y,t) are disjoint. 

This lemma gives us a useful bound on the size of a t-error-correcting 

code. We begin by counting the words in a sphere.     

Hence, the binomial coefficient          

                                                
n
r = 

n!
(n-r)!r!( )
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LEMMA 3.4 

If  A is a q-ary alphabet, x is a word over A of length n an r ≤ n, then the 

sphere S(x,r) contained exactly. 

 
n n n n

r
r( ( ( ( (( () ) ) )) ) )o q q q2

21 1 11+ + + +- - -...
 

Words. 

Proof 

We claim that for any i, the number of words y such that d(x,y) equals I is 
n( () )q 1- I

I ;
  the lemma then follows by summing for i = 0, I, …, r. 

d(x,y) = I means that x and y differ in exactly I position. Given x, in how 

many ways can we choose such a y ? we begin by choosing the position in 

which  x and y differ, this can be done in 

 
n( )I    ways.  

Then we choose what symbols will appear in these positions in y. for each 

position we can choose any symbol other than the symbol which appears in 

that position in x – this gives us q-1 choices. So we have (q-1)i  choices for 

these i  symbols altogether. 

 

THEOREM 3.1 

Hamming bound. If c is a t-error-correcting code of length n over a q-ary 

alphabet A, then 

n

n

n nn
(

((( (( ((

)

))) )) ))

q

qqq 2
2 111+ + + + ---I I

c 
... t

t  
 

 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013                                                      2678 
ISSN 2229-5518 
 

IJSER © 2013 
http://www.ijser.org 

 

Proof 

Each code word has a sphere of radius t around it, and by lemma 2.4. This 

sphere is disjoint. So the total number of words in all these spheres together 

is 

n nn n( ( ((( (( () ) )) )) ))o qqq 2
2 111 ++ + + --- I

... t
tM x

 
And this can’t be bigger than the total number of possible words, which qn . 

The hamming bound is also known as the sphere-packing bound. 

  

 

 

4.0 CONCLUSION 

We have successfully shown here that information transmission can be 

conveniently be discussed in terms of information metric, thus A measure of 

distance between information source is derived from algebra of 

measurement of which the space of information sources is shown to be a 

metric space; and the hamming metric, thus the typical measure of how 

“close” two (equal-length) strings are, is the hamming distance which is 

simply the number of places where they differ. We can conclude that metric 

space is a very useful tool in the field of Information theory and as well as 

many other fields of studies.  
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